Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Responses to oxidative and heavy metal stresses in cyanobacteria: recent advances.

Identifieur interne : 000609 ( Main/Exploration ); précédent : 000608; suivant : 000610

Responses to oxidative and heavy metal stresses in cyanobacteria: recent advances.

Auteurs : Corinne Cassier-Chauvat [France] ; Franck Chauvat [France]

Source :

RBID : pubmed:25561236

Descripteurs français

English descriptors

Abstract

Cyanobacteria, the only known prokaryotes that perform oxygen-evolving photosynthesis, are receiving strong attention in basic and applied research. In using solar energy, water, CO2 and mineral salts to produce a large amount of biomass for the food chain, cyanobacteria constitute the first biological barrier against the entry of toxics into the food chain. In addition, cyanobacteria have the potential for the solar-driven carbon-neutral production of biofuels. However, cyanobacteria are often challenged by toxic reactive oxygen species generated under intense illumination, i.e., when their production of photosynthetic electrons exceeds what they need for the assimilation of inorganic nutrients. Furthermore, in requiring high amounts of various metals for growth, cyanobacteria are also frequently affected by drastic changes in metal availabilities. They are often challenged by heavy metals, which are increasingly spread out in the environment through human activities, and constitute persistent pollutants because they cannot be degraded. Consequently, it is important to analyze the protection against oxidative and metal stresses in cyanobacteria because these ancient organisms have developed most of these processes, a large number of which have been conserved during evolution. This review summarizes what is known regarding these mechanisms, emphasizing on their crosstalk.

DOI: 10.3390/ijms16010871
PubMed: 25561236
PubMed Central: PMC4307280


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Responses to oxidative and heavy metal stresses in cyanobacteria: recent advances.</title>
<author>
<name sortKey="Cassier Chauvat, Corinne" sort="Cassier Chauvat, Corinne" uniqKey="Cassier Chauvat C" first="Corinne" last="Cassier-Chauvat">Corinne Cassier-Chauvat</name>
<affiliation wicri:level="4">
<nlm:affiliation>UMR8221, CEA, CNRS, Université Paris-Sud, Institut de Biologie et Technologie Saclay, Laboratoire de Biologie et Biotechnologie des Cyanobactéries, CEA-Saclay, Gif sur Yvette 91190, France. corinne.cassier-chauvat@cea.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR8221, CEA, CNRS, Université Paris-Sud, Institut de Biologie et Technologie Saclay, Laboratoire de Biologie et Biotechnologie des Cyanobactéries, CEA-Saclay, Gif sur Yvette 91190</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
</placeName>
<orgName type="university">Université Paris-Sud</orgName>
</affiliation>
</author>
<author>
<name sortKey="Chauvat, Franck" sort="Chauvat, Franck" uniqKey="Chauvat F" first="Franck" last="Chauvat">Franck Chauvat</name>
<affiliation wicri:level="4">
<nlm:affiliation>UMR8221, CEA, CNRS, Université Paris-Sud, Institut de Biologie et Technologie Saclay, Laboratoire de Biologie et Biotechnologie des Cyanobactéries, CEA-Saclay, Gif sur Yvette 91190, France. franck.chauvat@cea.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR8221, CEA, CNRS, Université Paris-Sud, Institut de Biologie et Technologie Saclay, Laboratoire de Biologie et Biotechnologie des Cyanobactéries, CEA-Saclay, Gif sur Yvette 91190</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
</placeName>
<orgName type="university">Université Paris-Sud</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25561236</idno>
<idno type="pmid">25561236</idno>
<idno type="doi">10.3390/ijms16010871</idno>
<idno type="pmc">PMC4307280</idno>
<idno type="wicri:Area/Main/Corpus">000565</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000565</idno>
<idno type="wicri:Area/Main/Curation">000565</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000565</idno>
<idno type="wicri:Area/Main/Exploration">000565</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Responses to oxidative and heavy metal stresses in cyanobacteria: recent advances.</title>
<author>
<name sortKey="Cassier Chauvat, Corinne" sort="Cassier Chauvat, Corinne" uniqKey="Cassier Chauvat C" first="Corinne" last="Cassier-Chauvat">Corinne Cassier-Chauvat</name>
<affiliation wicri:level="4">
<nlm:affiliation>UMR8221, CEA, CNRS, Université Paris-Sud, Institut de Biologie et Technologie Saclay, Laboratoire de Biologie et Biotechnologie des Cyanobactéries, CEA-Saclay, Gif sur Yvette 91190, France. corinne.cassier-chauvat@cea.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR8221, CEA, CNRS, Université Paris-Sud, Institut de Biologie et Technologie Saclay, Laboratoire de Biologie et Biotechnologie des Cyanobactéries, CEA-Saclay, Gif sur Yvette 91190</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
</placeName>
<orgName type="university">Université Paris-Sud</orgName>
</affiliation>
</author>
<author>
<name sortKey="Chauvat, Franck" sort="Chauvat, Franck" uniqKey="Chauvat F" first="Franck" last="Chauvat">Franck Chauvat</name>
<affiliation wicri:level="4">
<nlm:affiliation>UMR8221, CEA, CNRS, Université Paris-Sud, Institut de Biologie et Technologie Saclay, Laboratoire de Biologie et Biotechnologie des Cyanobactéries, CEA-Saclay, Gif sur Yvette 91190, France. franck.chauvat@cea.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR8221, CEA, CNRS, Université Paris-Sud, Institut de Biologie et Technologie Saclay, Laboratoire de Biologie et Biotechnologie des Cyanobactéries, CEA-Saclay, Gif sur Yvette 91190</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
</placeName>
<orgName type="university">Université Paris-Sud</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International journal of molecular sciences</title>
<idno type="eISSN">1422-0067</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cyanobacteria (drug effects)</term>
<term>Cyanobacteria (metabolism)</term>
<term>Ferredoxins (metabolism)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (metabolism)</term>
<term>Metal Nanoparticles (chemistry)</term>
<term>Metal Nanoparticles (toxicity)</term>
<term>Metallothionein (metabolism)</term>
<term>Metals, Heavy (metabolism)</term>
<term>Metals, Heavy (toxicity)</term>
<term>Oxidative Stress (drug effects)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Polysaccharides, Bacterial (chemistry)</term>
<term>Polysaccharides, Bacterial (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cyanobactéries (effets des médicaments et des substances chimiques)</term>
<term>Cyanobactéries (métabolisme)</term>
<term>Ferrédoxines (métabolisme)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Métallothionéine (métabolisme)</term>
<term>Métaux lourds (métabolisme)</term>
<term>Métaux lourds (toxicité)</term>
<term>Nanoparticules métalliques (composition chimique)</term>
<term>Nanoparticules métalliques (toxicité)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Polyosides bactériens (composition chimique)</term>
<term>Polyosides bactériens (métabolisme)</term>
<term>Stress oxydatif (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Polysaccharides, Bacterial</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Ferredoxins</term>
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Metallothionein</term>
<term>Metals, Heavy</term>
<term>Oxidoreductases</term>
<term>Polysaccharides, Bacterial</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Metal Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Nanoparticules métalliques</term>
<term>Polyosides bactériens</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cyanobacteria</term>
<term>Oxidative Stress</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Cyanobactéries</term>
<term>Stress oxydatif</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cyanobacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cyanobactéries</term>
<term>Ferrédoxines</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Métallothionéine</term>
<term>Métaux lourds</term>
<term>Oxidoreductases</term>
<term>Polyosides bactériens</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicity" xml:lang="en">
<term>Metal Nanoparticles</term>
<term>Metals, Heavy</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Métaux lourds</term>
<term>Nanoparticules métalliques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cyanobacteria, the only known prokaryotes that perform oxygen-evolving photosynthesis, are receiving strong attention in basic and applied research. In using solar energy, water, CO2 and mineral salts to produce a large amount of biomass for the food chain, cyanobacteria constitute the first biological barrier against the entry of toxics into the food chain. In addition, cyanobacteria have the potential for the solar-driven carbon-neutral production of biofuels. However, cyanobacteria are often challenged by toxic reactive oxygen species generated under intense illumination, i.e., when their production of photosynthetic electrons exceeds what they need for the assimilation of inorganic nutrients. Furthermore, in requiring high amounts of various metals for growth, cyanobacteria are also frequently affected by drastic changes in metal availabilities. They are often challenged by heavy metals, which are increasingly spread out in the environment through human activities, and constitute persistent pollutants because they cannot be degraded. Consequently, it is important to analyze the protection against oxidative and metal stresses in cyanobacteria because these ancient organisms have developed most of these processes, a large number of which have been conserved during evolution. This review summarizes what is known regarding these mechanisms, emphasizing on their crosstalk. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25561236</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>09</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1422-0067</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2014</Year>
<Month>Dec</Month>
<Day>31</Day>
</PubDate>
</JournalIssue>
<Title>International journal of molecular sciences</Title>
<ISOAbbreviation>Int J Mol Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Responses to oxidative and heavy metal stresses in cyanobacteria: recent advances.</ArticleTitle>
<Pagination>
<MedlinePgn>871-86</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/ijms16010871</ELocationID>
<Abstract>
<AbstractText>Cyanobacteria, the only known prokaryotes that perform oxygen-evolving photosynthesis, are receiving strong attention in basic and applied research. In using solar energy, water, CO2 and mineral salts to produce a large amount of biomass for the food chain, cyanobacteria constitute the first biological barrier against the entry of toxics into the food chain. In addition, cyanobacteria have the potential for the solar-driven carbon-neutral production of biofuels. However, cyanobacteria are often challenged by toxic reactive oxygen species generated under intense illumination, i.e., when their production of photosynthetic electrons exceeds what they need for the assimilation of inorganic nutrients. Furthermore, in requiring high amounts of various metals for growth, cyanobacteria are also frequently affected by drastic changes in metal availabilities. They are often challenged by heavy metals, which are increasingly spread out in the environment through human activities, and constitute persistent pollutants because they cannot be degraded. Consequently, it is important to analyze the protection against oxidative and metal stresses in cyanobacteria because these ancient organisms have developed most of these processes, a large number of which have been conserved during evolution. This review summarizes what is known regarding these mechanisms, emphasizing on their crosstalk. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cassier-Chauvat</LastName>
<ForeName>Corinne</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>UMR8221, CEA, CNRS, Université Paris-Sud, Institut de Biologie et Technologie Saclay, Laboratoire de Biologie et Biotechnologie des Cyanobactéries, CEA-Saclay, Gif sur Yvette 91190, France. corinne.cassier-chauvat@cea.fr.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chauvat</LastName>
<ForeName>Franck</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>UMR8221, CEA, CNRS, Université Paris-Sud, Institut de Biologie et Technologie Saclay, Laboratoire de Biologie et Biotechnologie des Cyanobactéries, CEA-Saclay, Gif sur Yvette 91190, France. franck.chauvat@cea.fr.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>12</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Int J Mol Sci</MedlineTA>
<NlmUniqueID>101092791</NlmUniqueID>
<ISSNLinking>1422-0067</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005288">Ferredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019216">Metals, Heavy</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011135">Polysaccharides, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9038-94-2</RegistryNumber>
<NameOfSubstance UI="D008668">Metallothionein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000458" MajorTopicYN="N">Cyanobacteria</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005288" MajorTopicYN="N">Ferredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053768" MajorTopicYN="N">Metal Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008668" MajorTopicYN="N">Metallothionein</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019216" MajorTopicYN="N">Metals, Heavy</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011135" MajorTopicYN="N">Polysaccharides, Bacterial</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>11</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>12</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>1</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>1</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25561236</ArticleId>
<ArticleId IdType="pii">ijms16010871</ArticleId>
<ArticleId IdType="doi">10.3390/ijms16010871</ArticleId>
<ArticleId IdType="pmc">PMC4307280</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2014;9(5):e96826</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24797411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2011 Jan;107(1):87-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20607406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1998 Jan 1;26(1):63-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9399802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EXS. 2012;101:133-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22945569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2014;15(11):19938-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25365180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2010 Jan;35(1):43-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19811920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biodivers. 2008 Oct;5(10):1990-2013</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18972521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2015 Mar 15;509-510:41-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24993511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2009 Jan 27;19(2):R81-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19174147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014;9(2):e89372</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24586727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Life (Basel). 2014 Nov 07;4(4):666-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25387163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Met Ions Life Sci. 2013;11:31-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23430769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanotoxicology. 2014 Sep;8(6):605-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23738945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Struct Biol. 2012;12:1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22289274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2014 Oct;196(19):3430-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25022856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1993 Feb 25;21(4):921-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8451191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2007 Feb 15;458(2):220-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17239812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2010 Jun;21(3):365-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20456936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jul;156(3):1631-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21562336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2003 Sep;185(18):5363-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12949088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1993 Nov;23(4):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8251644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2012 Apr;185-186:86-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22325869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2011 Nov;92(4):697-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21983706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014;9(7):e101743</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25010795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Colloid Interface Sci. 2013 Sep 1;405:35-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23777864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2015 Jan 2;14(1):59-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25208982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Jan;73(1):243-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17071784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2009 Jan;71(2):520-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19040637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007;8:350</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17910763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2011 Oct;16(7):1011-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21594652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2003 Dec;185(23):6780-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14617642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2011 Dec;24(6):1179-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21769609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1993 Jan;7(2):177-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8446025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(2):e55564</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23405172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2013 Sep;195(18):4138-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23852862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Colloids Surf B Biointerfaces. 2013 Oct 1;110:171-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23711788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Dec;154(4):1672-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20935175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Waste Manag. 2014 Dec;34(12):2587-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25242606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Jan;7(1):25-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19079350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 1994 Mar;28(3):145-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7764699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2014 Nov;94(3):609-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25238320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1998 May;28(4):813-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9643548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2011 Jan;6(1):89-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21301218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2000 Mar;182(6):1507-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10692354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2009 Jun;191(11):3534-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19304854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Mar;45(3):290-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15047877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10728-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9724772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Nov 04;4:428</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24204369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Jan 24;289(4):1930-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24311779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2012 Nov 30;162(1):134-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22677697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Dec 25;46(51):15018-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18044966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2006 Sep;89(2-3):157-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16969714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2013 Jul;11(7):443-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23712352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Mar 15;16(6):567-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22053845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protein Pept Sci. 2010 Dec;11(8):659-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21235502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Aug;1837(8):1293-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24780314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2014 Mar;6(3):396-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24531738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Oct 10;289(41):28121-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25160623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2006;60:149-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16704344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):1053-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23277585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 May 1;18(13):1654-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23231445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2011 Oct;14(5):608-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21840247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Rev Mar Sci. 2013;5:217-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22881354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Jul 7;48(26):6041-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 May 06;5:176</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24834068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2014 May 30;103:87-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24704854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2011 Nov;3(11):1130-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21952637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2004 Jun;186(11):3331-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15150218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2014 Mar 15;546:41-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24513162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2012 Jun;84(6):1177-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22554109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Feb 25;268(6):4494-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8440732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Feb;1824(2):392-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22155275</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Île-de-France</li>
</region>
<orgName>
<li>Université Paris-Sud</li>
</orgName>
</list>
<tree>
<country name="France">
<region name="Île-de-France">
<name sortKey="Cassier Chauvat, Corinne" sort="Cassier Chauvat, Corinne" uniqKey="Cassier Chauvat C" first="Corinne" last="Cassier-Chauvat">Corinne Cassier-Chauvat</name>
</region>
<name sortKey="Chauvat, Franck" sort="Chauvat, Franck" uniqKey="Chauvat F" first="Franck" last="Chauvat">Franck Chauvat</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000609 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000609 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25561236
   |texte=   Responses to oxidative and heavy metal stresses in cyanobacteria: recent advances.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25561236" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020